Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.930
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612625

RESUMO

Extreme drought weather has occurred frequently in recent years, resulting in serious yield loss in tea plantations. The study of drought in tea plantations is becoming more and more intensive, but there are fewer studies on drought-resistant measures applied in actual production. Therefore, in this study, we investigated the effect of exogenous tea polyphenols on the drought resistance of tea plant by pouring 100 mg·L-1 of exogenous tea polyphenols into the root under drought. The exogenous tea polyphenols were able to promote the closure of stomata and reduce water loss from leaves under drought stress. Drought-induced malondialdehyde (MDA) accumulation in tea leaves and roots was also significantly reduced by exogenous tea polyphenols. Combined transcriptomic and metabolomic analyses showed that exogenous tea polyphenols regulated the abnormal responses of photosynthetic and energy metabolism in leaves under drought conditions and alleviated sphingolipid metabolism, arginine metabolism, and glutathione metabolism in the root system, which enhanced the drought resistance of tea seedlings. Exogenous tea polyphenols induced jasmonic acid-isoleucine (JA-ILE) accumulation in the root system, and the jasmonic acid-isoleucine synthetase gene (TEA028623), jasmonic acid ZIM structural domain proteins (JAMs) synthesis genes (novel.22237, TEA001821), and the transcription factor MYC2 (TEA014288, TEA005840) were significantly up-regulated. Meanwhile, the flavonoid metabolic flow was significantly altered in the root; for example, the content of EGCG, ECG, and EGC was significantly increased. Thus, exogenous tea polyphenols enhance the drought resistance of tea plants through multiple pathways.


Assuntos
Camellia sinensis , Ciclopentanos , Resistência à Seca , Oxilipinas , Isoleucina , Polifenóis/farmacologia , Camellia sinensis/genética , Flavonoides , Chá
2.
Nutrients ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38613030

RESUMO

Black tea (BT), the most consumed tea worldwide, can alleviate hyperlipidemia which is a serious threat to human health. However, the quality of summer BT is poor. It was improved by microbial fermentation in a previous study, but whether it affects hypolipidemic activity is unknown. Therefore, we compared the hypolipidemic activity of BT and microbially fermented black tea (EFT). The results demonstrated that BT inhibited weight gain and improved lipid and total bile acid (TBA) levels, and microbial fermentation reinforced this activity. Mechanistically, both BT and EFT mediate bile acid circulation to relieve hyperlipidemia. In addition, BT and EFT improve dyslipidemia by modifying the gut microbiota. Specifically, the increase in Lactobacillus johnsonii by BT, and the increase in Mucispirillum and Colidextribacter by EFT may also be potential causes for alleviation of hyperlipidemia. In summary, we demonstrated that microbial fermentation strengthened the hypolipidemic activity of BT and increased the added value of BT.


Assuntos
Camellia sinensis , Hiperlipidemias , Humanos , Chá , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/prevenção & controle , Fermentação , Ácidos e Sais Biliares
3.
BMC Plant Biol ; 24(1): 229, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561653

RESUMO

BACKGROUND: BAHD acyltransferases are among the largest metabolic protein domain families in the genomes of terrestrial plants and play important roles in plant growth and development, aroma formation, and biotic and abiotic stress responses. Little is known about the BAHDs in the tea plant, a cash crop rich in secondary metabolites. RESULTS: In this study, 112 BAHD genes (CsBAHD01-CsBAHD112) were identified from the tea plant genome, with 85% (98/112) unevenly distributed across the 15 chromosomes. The number of BAHD gene family members has significantly expanded from wild tea plants to the assamica type to the sinensis type. Phylogenetic analysis showed that they could be classified into seven subgroups. Promoter cis-acting element analysis revealed that they contain a large number of light, phytohormones, and stress-responsive elements. Many members displayed tissue-specific expression patterns. CsBAHD05 was expressed at more than 500-fold higher levels in purple tea leaves than in green tea leaves. The genes exhibiting the most significant response to MeJA treatment and feeding by herbivorous pests were primarily concentrated in subgroups 5 and 6. The expression of 23 members of these two subgroups at different time points after feeding by tea green leafhoppers and tea geometrids was examined via qPCR, and the results revealed that the expression of CsBAHD93, CsBAHD94 and CsBAHD95 was significantly induced after the tea plants were subjected to feeding by both pricking and chewing pests. Moreover, based on the transcriptome data for tea plants being fed on by these two pests, a transcriptional regulatory network of different transcription factor genes coexpressed with these 23 members was constructed. CONCLUSIONS: Our study provides new insights into the role of BAHDs in the defense response of tea plants, and will facilitate in-depth studies of the molecular function of BAHDs in resistance to herbivorous pests.


Assuntos
Aminas , Camellia sinensis , Dissulfetos , Camellia sinensis/metabolismo , Filogenia , Genoma de Planta , Chá/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38612446

RESUMO

Camellia is an important plant genus that includes well-known species such as C. sinensis, C. oleifera, and C. japonica. The C. sinensis cultivar 'Sangmok', one of Korea's standard types of tea landraces, is a small evergreen tree or shrub. Genome annotation has shown that Korean tea plants have special and unique benefits and superior components, such as catechin. The genome of Camellia sinensis cultivar 'Sangmok' was assembled on the chromosome level, with a length of 2678.62 Mbp and GC content of 38.16%. Further, 15 chromosome-scale scaffolds comprising 82.43% of the assembly (BUSCO completeness, 94.3%) were identified. Analysis of 68,151 protein-coding genes showed an average of 5.003 exons per gene. Among 82,481 coding sequences, the majority (99.06%) were annotated by Uniprot/Swiss-Prot. Further analysis revealed that 'Sangmok' is closely related to C. sinensis, with a divergence time of 60 million years ago. A total of 3336 exclusive gene families in 'Sangmok' were revealed by gene ontology analysis to play roles in auxin transport and cellular response mechanisms. By comparing these exclusive genes with 551 similar catechin genes, 17 'Sangmok'-specific catechin genes were identified by qRT-PCR, including those involved in phytoalexin biosynthesis and related to cytochrome P450. The 'Sangmok' genome exhibited distinctive genes compared to those of related species. This comprehensive genomic investigation enhances our understanding of the genetic architecture of 'Sangmok' and its specialized functions. The findings contribute valuable insights into the evolutionary and functional aspects of this plant species.


Assuntos
Camellia sinensis , Catequina , Humanos , Metabolismo Secundário , Éxons , Cromossomos Humanos Par 15 , Camellia sinensis/genética , Chá
5.
Luminescence ; 39(3): e4727, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527806

RESUMO

Green tea extract (GTE) contains antioxidants that are present in green tea. The active constituents of green tea extract are catechins. This study demonstrates a spectrofluorimetric method for measuring GTE's catechin concentration based on its native fluorescence. To design a quick, sensitive, and ecological spectrofluorimetric approach, all features were investigated and adjusted. This method relies on determining the GTE ethanolic solution's native fluorescence at 312 nm after excitation at 227 nm. The calibration graph displayed a linear regression for values between 0.05 and 1.0 µg mL-1. The detection and quantification limits of the proposed technique were 0.008 and 0.026 µg mL-1, respectively. Two pure catechins present in GTE, (-)-epicatechin and (-)-epigallocatechin gallate, were examined by the proposed method. The analytical estimation of GTE in the pharmaceutical tablet was achieved effectively using this approach. An adequate degree of agreement was found when the findings were compared to those obtained by the comparative technique. Therefore, the novel strategy may be used in the GTE quality control study with minimal risks to people or the environment. The quantum yields of catechins were estimated. The validated technique was accepted by the International Council of Harmonization criteria.


Assuntos
Camellia sinensis , Catequina , Humanos , Catequina/análise , Espectrometria de Fluorescência , Extratos Vegetais , Chá , Antioxidantes/análise
6.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542215

RESUMO

The market value of tea is largely dependent on the tea species and cultivar. Therefore, it is important to develop efficient molecular markers covering the entire tea genome that can be used for the identification of tea varieties, marker-assisted breeding, and mapping important quantitative trait loci for beneficial traits. In this study, genome-wide molecular markers based on intron length polymorphism (ILP) were developed for tea trees. A total of 479, 1393, and 1342 tea ILP markers were identified using the PCR method in silico from the 'Shuchazao' scaffold genome, the chromosome-level genome of 'Longjing 43', and the ancient tea DASZ chromosome-level genome, respectively. A total of 230 tea ILP markers were used to amplify six tea tree species. Among these, 213 pairs of primers successfully characterize products in all six species, with 112 primer pairs exhibiting polymorphism. The polymorphism rate of primer pairs increased with the improvement in reference genome assembly quality level. The cross-species transferability analysis of 35 primer pairs of tea ILP markers showed an average amplification rate of 85.17% through 11 species in 6 families, with high transferability in Camellia reticulata and tobacco. We also used 40 pairs of tea ILP primers to evaluate the genetic diversity and population structure of C. tetracocca with 176 plants from Puan County, Guizhou Province, China. These genome-wide markers will be a valuable resource for genetic diversity analysis, marker-assisted breeding, and variety identification in tea, providing important information for the tea industry.


Assuntos
Camellia sinensis , Humanos , Íntrons/genética , Camellia sinensis/genética , Marcadores Genéticos , Genoma de Planta , Melhoramento Vegetal , Chá
7.
BMC Plant Biol ; 24(1): 181, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468197

RESUMO

BACKGROUND: The era of high throughput sequencing offers new paths to identifying species boundaries that are complementary to traditional morphology-based delimitations. De novo species delimitation using traditional or DNA super-barcodes serve as efficient approaches to recognizing putative species (molecular operational taxonomic units, MOTUs). Tea plants (Camellia sect. Thea) form a group of morphologically similar species with significant economic value, providing the raw material for tea, which is the most popular nonalcoholic caffeine-containing beverage in the world. Taxonomic challenges have arisen from vague species boundaries in this group. RESULTS: Based on the most comprehensive sampling of C. sect. Thea by far (165 individuals of 39 morphospecies), we applied three de novo species delimitation methods (ASAP, PTP, and mPTP) using plastome data to provide an independent evaluation of morphology-based species boundaries in tea plants. Comparing MOTU partitions with morphospecies, we particularly tested the congruence of MOTUs resulting from different methods. We recognized 28 consensus MOTUs within C. sect. Thea, while tentatively suggesting that 11 morphospecies be discarded. Ten of the 28 consensus MOTUs were uncovered as morphospecies complexes in need of further study integrating other evidence. Our results also showed a strong imbalance among the analyzed MOTUs in terms of the number of molecular diagnostic characters. CONCLUSION: This study serves as a solid step forward for recognizing the underlying species boundaries of tea plants, providing a needed evidence-based framework for the utilization and conservation of this economically important plant group.


Assuntos
Camellia sinensis , Camellia , Humanos , Código de Barras de DNA Taxonômico/métodos , Camellia sinensis/genética , Chá/genética , DNA , Filogenia
8.
Talanta ; 272: 125842, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428131

RESUMO

A novel sensor array was developed based on the enzyme/nanozyme hybridization for the identification of tea polyphenols (TPs) and Chinese teas. The enzyme/nanozyme with polyphenol oxidase activity can catalyze the reaction between TPs and 4-aminoantipyrine (4-AAP) to produce differences in color, and the sensor array was thus constructed to accurately identify TPs mixed in different species, concentrations, or ratios. In addition, a machine learning based dual output model was further used to effectively predict the classes and concentrations of unknown samples. Therefore, the qualitative and quantitative detection of TPs can be realized continuously and quickly. Furthermore, the sensor array combining the machine learning based dual output model was also utilized for the identification of Chinese teas. The method can distinguish the six teas series in China, and then precisely differentiate the more specific tea varieties. This study provides an efficient and facile strategy for the identification of teas and tea products.


Assuntos
Camellia sinensis , Polifenóis , Polifenóis/análise , Chá , Catecol Oxidase , Aprendizado de Máquina
9.
Sci Rep ; 14(1): 7124, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531928

RESUMO

This study evaluates the effects of a green tea (Camellia sinensis) and hyaluronic acid gel on fibroblast activity and alveolar bone repair following third molar extractions. By examining the gene expression related to cell survival, proliferation, and angiogenesis, the study bridges in vitro findings with clinical outcomes in a split-mouth randomized trial. Human fibroblasts were exposed to the treatment gel, analysing gene expression through RT-qPCR. Twenty participants undergoing bilateral third molar extractions received the test gel on one side and a placebo on the other. Assessments included patient-reported outcomes, professional evaluations, and radiographic analyses at multiple postoperative intervals. The test gel significantly enhanced AKT, CDKs, and VEGF gene expressions, indicating a positive effect on angiogenesis and cell proliferation. Clinically, it resulted in reduced exudate, swelling, and secondary interventions, with radiographs showing improved alveolar bone density after 90 days. The green tea and hyaluronic acid gel significantly improves soft tissue and bone healing post-extraction, offering a promising adjunctive therapy for enhancing postoperative recovery. This gel represents a novel adjuvant treatment option for facilitating improved healing outcomes after third molar extractions, highlighting its potential utility in clinical dental practice.


Assuntos
Camellia sinensis , Ácido Hialurônico , Humanos , Chá , Dente Serotino/cirurgia , Extração Dentária/métodos
10.
Food Res Int ; 182: 114151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519162

RESUMO

To better understand the functional mechanism of four types of tea (green tea, black tea, jasmine tea, and dark tea) on the quality of stewed beef, changes in quality characteristics, proteomics, and metabolomics were investigated. Adding these four tea types decreased the pH value, L* value, shear force, and hardness of the stewed beef. Among these groups, black tea (BT) significantly improved the tenderness of the stewed beef. They have substantially impacted pathways related to protein oxidative phosphorylation, fatty acid degradation, amino acid degradation, and peroxisomes in stewed beef. The study identified that Myosin-2, Starch binding domain 1, Heat shock protein beta-6, and Myosin heavy chain four are significantly correlated with the quality characteristics of tea-treated stewed beef, making them potential biomarkers. Green tea (GT), black tea (BT), jasmine tea (JT), and dark tea (DT) led to the downregulation of 20, 36, 38, and 31 metabolites, respectively, which are lipids and lipid-like molecules in the stewed beef. The co-analysis of proteomics and metabolomics revealed that differential proteins significantly impacted metabolites associated with carbohydrates, amino acids, lipids, and other nutrients. This study determined the effects of four types of tea on the quality of stewed beef and their underlying mechanisms, providing valuable insights for applying of tea in meat products. At the same time, it can offer new ideas for developing fresh meat products.


Assuntos
Camellia sinensis , Carne Vermelha , Animais , Bovinos , Proteômica , Multiômica , Carne Vermelha/análise , Chá/química , Lipídeos
11.
Vet Med Sci ; 10(3): e1432, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527006

RESUMO

BACKGROUND: Trichomonas gallinae is a parasite that causes canker and severe loss and death, especially in young pigeons. Metronidazole (MTZ) is the recommended drug for treating avian trichomoniasis. Due to drug resistance, non-chemical alternatives, such as medicinal plant extracts, are also considered possible therapies for this disease. OBJECTIVES: This study compares the antitrichomonal effects of MTZ with extracts of Camellia sinensis and Ziziphus vulgaris on T. gallinae in vitro. METHODS: Samples of T. gallinae were taken from infected pigeons. Multi-well plates with different concentrations (5, 10, 25, 50 and 100 µg/mL) of plant extracts were used for the in vitro study. RESULTS: The minimum inhibitory concentration (MIC) of C. sinensis extract was 25 µg/mL over 24 h, compared to 50 µg/mL for MTZ. The MIC value of the Z. vulgaris extracts was 50 µg/mL. CONCLUSIONS: The results suggest that the extracts of Z. vulgaris and C. sinensis, as potential natural agents, could have anti-avian trichomoniasis properties. This study also shows that MTZ, C. sinensis and Z. vulgaris are equally effective in preventing the growth of T. gallinae trophozoites in the culture.


Assuntos
Camellia sinensis , Tricomoníase , Trichomonas , Ziziphus , Animais , Tricomoníase/tratamento farmacológico , Tricomoníase/veterinária , Antitricômonas/farmacologia , Antitricômonas/uso terapêutico , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Columbidae
12.
Food Res Int ; 181: 114094, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448096

RESUMO

The detailed dynamics of small molecular nonvolatile chemical and bacterial diversities, as well as their relationship are still unclear in the manufacturing process of Keemun black tea (KMBT). Herein, mass spectrometry-based untargeted metabolomics, Feature-based Molecular Networking (FBMN) and bacterial DNA amplicon sequencing were used to investigate the dense temporal samples of the manufacturing process. For the first time, we reveal that the pyrogallol-type catechins are oxidized asynchronously before catechol-type catechins during the black tea processing. Rolling is the key procedure for forming the small molecular nonvolatile metabolite profile (SMNMetProf), increasing the metabolite richness, and then shaping the bacterial community structure in the KMBT manufacturing process, which decreases both molecular weight and molecular polarity of the small molecular nonvolatile metabolites. The SMNMetProf of black tea is formed by the endogenous enzymatic oxidation of tea leaves, rather than bacterial fermentation.


Assuntos
Camellia sinensis , Catequina , Chá , Comércio , DNA Bacteriano/genética
13.
BMC Genomics ; 25(1): 238, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438984

RESUMO

BACKGROUND: The caffeoyl-CoA-O methyltransferase (CCoAOMT) family plays a crucial role in the oxidative methylation of phenolic substances and is involved in various plant processes, including growth, development, and stress response. However, there is a limited understanding of the interactions among CCoAOMT protein members in tea plants. RESULTS: In this study, we identified 10 members of the CsCCoAOMT family in the genome of Camellia sinensis (cultivar 'HuangDan'), characterized by conserved gene structures and motifs. These CsCCoAOMT members were located on six different chromosomes (1, 2, 3, 4, 6, and 14). Based on phylogenetic analysis, CsCCoAOMT can be divided into two groups: I and II. Notably, the CsCCoAOMT members of group Ia are likely to be candidate genes involved in lignin biosynthesis. Moreover, through the yeast two-hybrid (Y2H) assay, we established protein interaction networks for the CsCCoAOMT family, revealing 9 pairs of members with interaction relationships. CONCLUSIONS: We identified the CCoAOMT gene family in Camellia sinensis and conducted a comprehensive analysis of their classifications, phylogenetic and synteny relationships, gene structures, protein interactions, tissue-specific expression patterns, and responses to various stresses. Our findings shed light on the evolution and composition of CsCCoAOMT. Notably, the observed interaction among CCoAOMT proteins suggests the potential formation of the O-methyltransferase (OMT) complex during the methylation modification process, expanding our understanding of the functional roles of this gene family in diverse biological processes.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Filogenia , Metiltransferases/genética , Chá
14.
Food Chem Toxicol ; 187: 114586, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493978

RESUMO

The risk assessment of heavy metals in tea is extremely imperative for the health of tea consumers. However, the effects of varietal variations and seasonal fluctuations on heavy metals and minerals in tea plants remain unclear. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to evaluate the contents of aluminum (Al), manganese (Mn), magnesium (Mg), boron (B), calcium (Ca), copper (Cu), cobalt (Co), iron (Fe), sodium (Na), zinc (Zn), arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and antimony (Sb) in the two categories of young leaves (YL) and mature leaves (ML) of tea (Camellia sinensis) cultivars throughout the growing seasons. The results showed significant variations in the contents of the investigated nutrients both among the different cultivars and growing seasons as well. Furthermore, the average concentrations of Al, Mn, Mg, B, Ca, Cu, Co, Fe, Na, Zn, As, Cd, Cr, Ni, and Sb in YL ranged, from 671.58-2209.12, 1260.58-1902.21, 2290.56-2995.36, 91.18-164.68, 821.95-5708.20, 2.55-3.80, 3.96-25.22, 37.95-202.84, 81.79-205.05, 27.10-69.67, 0.028-0.053, 0.065-0.127, 2.40-3.73, 10.57-12.64, 0.11-0.14 mg kg-1, respectively. In ML, the concentrations were 2626.41-7834.60, 3980.82-6473.64, 3335.38-4537.48, 327.33-501.70, 9619.89-13153.68, 4.23-8.18, 17.23-34.20, 329.39-567.19, 145.36-248.69, 40.50-81.42, 0.089-0.169, 0.23-0.27, 5.24-7.89, 18.51-23.97, 0.15-0.19 mg kg-1, respectively. The contents of all analyzed nutrients were found to be higher in ML than in YL. Target hazard quotients (THQ) of As, Cd, Cr, Ni, and Sb, as well as the hazard index (HI), were all less than one, suggesting no risk to human health via tea consumption. This research might provide the groundwork for essential minerals recommendations, as well as a better understanding and management of heavy metal risks in tea.


Assuntos
Arsênio , Camellia sinensis , Metais Pesados , Humanos , Estações do Ano , Cádmio/análise , Monitoramento Ambiental/métodos , Metais Pesados/toxicidade , Metais Pesados/análise , Arsênio/análise , Minerais , Cromo/análise , Níquel/análise , Manganês/análise , Alumínio/análise , Medição de Risco , Zinco/análise , Chá/química
15.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542498

RESUMO

Tea grey blight disease is one of the most destructive diseases that infects tea and is caused by the pathogen Pestalotiopsis theae (Sawada) Steyaert. L-theanine is a unique non-protein amino acid of the tea plant. Different concentrations of L-theanine exhibit significant inhibitory effects on the growth and sporulation ability of the pathogen causing tea grey blight disease. To understand the effect mechanism of L-theanine on P. theae, transcriptome profiling was performed on the pathogenic mycelium treated with three different concentrations of L-theanine: no L-theanine treatment (TH0), 20 mg/mL theanine treatment (TH2), and 40 mg/mL theanine treatment (TH4). The colony growths were significantly lower in the treatment with L-theanine than those without L-theanine. The strain cultured with a high concentration of L-theanine produced no spores or only a few spores. In total, 2344, 3263, and 1158 differentially expressed genes (DEGs) were detected by RNA-sequencing in the three comparisons, Th2 vs. Th0, Th4 vs. Th0, and Th4 vs. Th2, respectively. All DEGs were categorized into 24 distinct clusters. According to GO analysis, low concentrations of L-theanine primarily affected molecular functions, while high concentrations of L-theanine predominantly affected biological processes including external encapsulating structure organization, cell wall organization or biogenesis, and cellular amino acid metabolic process. Based on KEGG, the DEGs of Th2 vs. Th0 were primarily involved in pentose and glucuronate interconversions, histidine metabolism, and tryptophan metabolism. The DEGs of Th4 vs. Th0 were mainly involved in starch and sucrose metabolism, amino sugar, and nucleotide sugar metabolism. This study indicated that L-theanine has a significant impact on the growth and sporulation of the pathogen of tea grey blight disease and mainly affects amino acid metabolism, carbohydrate metabolism, and cellular structure-related biosynthesis processes of pathogenic fungi. This work provides insights into the direct control effect of L-theanine on pathogenic growth and also reveals the molecular mechanisms of inhibition of L-theanine to P. theae.


Assuntos
Ascomicetos , Camellia sinensis , Transcriptoma , Glutamatos/farmacologia , Camellia sinensis/metabolismo , Folhas de Planta/metabolismo , Chá/química
16.
Food Chem ; 446: 138851, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428080

RESUMO

The quality of white tea (WT) is impacted by selected tea cultivars. To explore the organoleptic quality of a recently-discovered WT ("Caicha", CC), HS-SPME/GC-MS and UPLC were employed to identify volatile and non-volatile compounds in tea samples. Multiple statistical methods demonstrated the distinctions between CC and four mainstream WT varieties from main producing areas. CC exhibited abundant volatile alcohol, terpenoids, ketone, aldehyde and ester, as well as non-volatile lignans and coumarins, phenolic acids and low-molecular carbohydrates. These substances combinedly contributed to the flavor attributes of CC, characterized by an intense herbal/citrus-like cleanness and flower/fruit-like sweetness, scarce in existing commercial WT varieties. Sensory evaluation corroborated these findings. In conclusion, we have processed a new tea variety (CC) with WT manufacturing technology, and discovered the unique cleanness and sweetness of it. This study enriches the raw material database for WT production and blending, and boosts the development of more premium WT varieties.


Assuntos
Camellia sinensis , Lignanas , Compostos Orgânicos Voláteis , Chá/química , Camellia sinensis/química , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos
17.
Int J Biol Macromol ; 264(Pt 2): 130735, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471611

RESUMO

Drought is the stressor with a significant adverse impact on the yield stability of tea plants. HD-ZIP III transcription factors (TFs) play important regulatory roles in plant growth, development, and stress responses. However, whether and how HD-ZIP III TFs are involved in drought response and tolerance in tea plants remains unclear. Here, we identified seven HD-ZIP III genes (CsHDZ3-1 to CsHDZ3-7) in tea plant genome. The evolutionary analysis demonstrated that CsHDZ3 members were subjected to purify selection. Subcellular localization analysis revealed that all seven CsHDZ3s located in the nucleus. Yeast self-activation and dual-luciferase reporter assays demonstrated that CsHDZ3-1 to CsHDZ3-4 have trans-activation ability whereas CsHDZ3-5 to CsHDZ3-7 served as transcriptional inhibitors. The qRT-PCR assay showed that all seven CsHDZ3 genes could respond to simulated natural drought stress and polyethylene glycol treatment. Further assays verified that all CsHDZ3 genes can be cleaved by csn-miR166. Overexpression of csn-miR166 inhibited the expression of seven CsHDZ3 genes and weakened drought tolerance of tea leaves. In contrast, suppression of csn-miR166 promoted the expression of seven CsHDZ3 genes and enhanced drought tolerance of tea leaves. These findings established the foundation for further understanding the mechanism of CsHDZ3-miR166 modules' participation in drought responses and tolerance.


Assuntos
Camellia sinensis , Resistência à Seca , Camellia sinensis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma de Planta , Chá/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Food Chem ; 447: 139080, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38520904

RESUMO

Targeted metabolomics combined with chemometrics were applied to investigate the flavor profiles of 4 white tea samples, which were produced from different maturity fresh tea leaves with different withering methods. Mature leaves that underwent novel withering process at higher temperature (28-30℃) and humidity (75 ± 3 %) (MN) were characterized by intense milky flavor. The content of free amino acids, catechins, and soluble sugars in MN were significantly lower than that in the other 3 tea samples, resulting in a sweet and mellow taste with low bitterness. Meanwhile, MN possessed the highest intensity of milky aroma, which could be mainly attributed to the existence of dihydro-5-pentyl-2(3H)-furanone and 2-pentyl-furan as the key volatile substances with coconut and creamy fragrance. These findings provide insight into the substance foundations of milky flavor, and identified leaf maturity and processing method as the determining factors of the milk-flavored white tea (MFWT).


Assuntos
Camellia sinensis , Catequina , Camellia sinensis/química , Chá/química , Metabolômica/métodos , Catequina/análise , Odorantes/análise , Folhas de Planta/química
19.
Environ Monit Assess ; 196(4): 371, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489120

RESUMO

Crop cultivation suitability plays a vital role in determining the distribution, quality, and production of crop and can be greatly affected by climate change. Therefore, evaluating crop cultivation suitability under climate change and identifying the factors influencing it can optimize crop cultivation layout and improve production and quality. Based on comprehensive datasets including geographical distribution points, climate data, soil characteristics, and topography, our study employed the MaxEnt model to simulate the potential distribution of Pu'er tea (Camellia sinensis var. assamica) cultivation suitability in Yunnan Province from 1961 to 2020. Furthermore, we assessed the consistency between the simulated suitable areas and the actual production of Pu'er tea. The results showed that precipitation of the warmest quarter, precipitation of the driest month, and average temperature in January were the three dominant environmental variables affecting the cultivation distribution of Pu'er tea. The high suitable areas for Pu'er tea cultivation in Yunnan Province were mainly distributed in the western and southern regions, accounting for 13.89% of the total area of Yunnan Province. The medium suitable areas are mainly distributed in the central and western regions of Yunnan Province, accounting for 20.07% of the total area of Yunnan Province. Over the past 60 years, the unsuitable area for Pu'er tea has increased, while the suitable area has shown a trend of migration to the southwest. Changes in precipitation and temperature were found to be the main drivers of the changes in the distribution of suitable areas for Pu'er tea. We also found a mismatch between the cultivation suitability and the actual production of Pu'er tea. Our study provides an accurate assessment and zoning analysis of the suitability of Pu'er tea cultivation in Yunnan Province, which can help optimize the layout of Pu'er tea cultivation and reduce potential climate risks.


Assuntos
Camellia sinensis , Chá , China , Monitoramento Ambiental , Temperatura
20.
Sci Total Environ ; 920: 170737, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340860

RESUMO

The study investigated the influence of a National Highway (NH) traversing tea estates (TEs) on heavy metal (HM) contamination in the top soils of Upper Assam, India. The dispersion and accumulation of six HMs, viz. cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), and zinc (Zn), within tea-growing soils were assessed using diverse indices: contamination factor (CF), degree of contamination (DC), enrichment factor (EF), geo-accumulation index (Igeo), modified degree of contamination (MDC), Nemerow pollution index (PINemerow), pollution load index (PLI), potential ecological risk factor (Eri), and potential ecological risk index (RI). The order of HM prevalence was Fe > Mn > Zn > Ni > Cu > Cd. Elevated Cd levels near the NH prompted immediate attention, while Cd and Zn showed moderate pollution in CF, EF, and RI. The remaining metals posed minimal individual risk (Eri< 40), resulting in an overall contamination range of "nil to shallow," signifying slight contamination from the studied metals. From MDC values for investigated metals, it was found to be "zero to very low degree of contamination" at all locations except the vicinity of NH. Soil pollution, as determined by PLI, indicated unpolluted soils in both districts, yet PINemerow values indicated slight pollution. The statistical analysis revealed that there is a significant decrease in most of the indices of HM as the distance from NH increases. The application of multivariate statistical techniques namely Principal Component Analysis and Cluster Analysis showed the presence of three distinct homogenous groups of distances based on different indices. This investigation underscores NH-associated anthropogenic effects on TE soil quality due to HM deposition, warranting proactive mitigation measures.


Assuntos
Camellia sinensis , Metais Pesados , Poluentes do Solo , Solo , Cádmio/análise , Medição de Risco , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluição Ambiental/análise , Zinco/análise , Manganês/análise , Níquel/análise , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...